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1. INTRODUCTION

The buckling analysis for a column subjected to a follower force was carried out in an
earlier time [1, 2]. In the case of applying a follower force, the static criterion is no longer
valid and it is necessary to use the dynamic criterion. In an earlier time, analysis for the
problem can be referred to in references [3–7]. It is well known that the dynamic criterion
for evaluating the buckling loading of a column mainly arises from the problem of the
non-conservative force case. As was pointed out by Herrmann [8], the breakdown of Euler
method is not a necessary consequence of non-conservativeness of the loading. Thus, it
appears desirable to gain a deeper insight into the interrelation of non-conservativeness,
existence or absence of adjacent equilibrium configurations and applicability of stability
criteria.

Vibration and stability of a non-uniform beam subjected to a follower force was studied
in references [9, 10]. The investigation was limited to the usual follower force case, i.e.,
m ¼ 1 case in the present study. Similar study was carried out for the generalized follower
force case (m=1) [11–13].

In the knowledge of the author, there was no investigation for the force–
frequency interaction of varying cross-section cantilever when the tangency coefficient
m is changed gradually. In the first part of the paper, we investigate the case that a
uniform cross-section cantilever is under the action of the generalized follower
force P: The slope at the free end of column is denoted by y ¼ dW=dx (at x ¼ L),
and the force P is applied at an angle b ¼ my (04m51). In fact, m ¼ 0 corresponds
to the Euler buckling case and m ¼ 1 corresponds to the usual follower force case.
The force–frequency interaction for the cantilever with different values of (m) is
investigated. The interaction can be described by a force–frequency interaction
curve. It is found that the value of (m) has a significant influence to the characters
of the force–frequency interaction. There is a transform value of m, which is denoted
by mtr: In the uniform section case, mtr ¼ 0�5; which was pointed out in an earlier
time [14].

In the uniform cross-section case, the force–frequency interaction can be expressed by
an equation f ðo; p;mÞ ¼ 0 (see equation (10)), where o is the frequency and p is
the compressive force. The relevant problem for the column with varying cross-section
is also studied. The problem is more complicated and has to solve numerically. The
force–frequency interaction can also be expressed by an equation f ðo; p;mÞ ¼ 0 (see
0022-460X/02/$35.00 # 2002 Published by Elsevier Science Ltd.
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equation (22)). After analyzing the interaction shown by equation f ðo; p;mÞ ¼ 0; the
buckling loading or the critical loading of the bar can be evaluated immediately.

2. ANALYSIS FOR THE UNIFORM SECTION CASE

In this paper, interaction between compressive force and vibration frequency for a
cantilever under the action of the generalized follower force P is studied, and the buckling
or critical loading of the bar is also investigated (Figure 1). The tangent at the right end of
column is denoted by y ¼ dW=dx (at x ¼ L), and the force P is applied at an angle b ¼ my
(04m51). The (m) value is called the tangency coefficient hereafter.

In the vibration analysis, after letting the displacement wðx; tÞ in the form

wðx; tÞ ¼ WðxÞ sinðOtÞ; ð1Þ
the governing equation for the displacement of column with a varying cross-section takes
the form [4]

d2

dx2
EIðxÞ d

2W

dx2

� �
þ P

d2W

dx2
� O2rAðxÞW ¼ 0 ð04x4LÞ; ð2Þ

where O denotes the vibration frequency, r the mass density of materials, E Young’s
modulus of elasticity, IðxÞ the moment inertia of section, and AðxÞ the area of section.

For a cantilever shown in Figure 1, the boundary conditions will be

W jx¼0 ¼ 0;
dW

dx

����
x¼0

¼ 0; ð3a; bÞ

d2W

dx2

����
x¼L

¼ 0;
d

dx
EIðxÞd

2W

dx2

� �
þ Pð1� mÞdW

dx

� �����
x¼L

¼ 0: ð3c; dÞ

If the column has a circular section with the taper configuration, the two functions IðxÞ
and AðxÞ; have the following expression:

IðxÞ ¼ I0gðxÞ; where I0 ¼ pa4=4; gðxÞ ¼ 1þ ex

L

� �4

; ð4Þ

AðxÞ ¼ A0hðxÞ; where A0 ¼ pa2; hðxÞ ¼ 1þ ex

L

� �2

; ð5Þ

where ‘‘a’’ denotes the radius at the left section (at x ¼ 0), and ‘‘e’’ represents the degree of
the taper configuration. In the following study, the force P and the vibration frequency O
may be normalized as

P ¼ pEI0
p
L

� �2

ð p ¼ k2Þ; O ¼ o
EI0

rA0

� 	1=2 p
L

� �2

: ð6a; bÞ
Figure 1. A cantilever under the action of the generalized follower force.



LETTERS TO THE EDITOR 993
The constant section case will be considered first. In this case, there are e ¼ 0; hðxÞ ¼ 1
and gðxÞ ¼ 1 in equations (4) and (5), and equation (2) has a general solution [4]

WðxÞ ¼ A coshðd1xÞ þ B sinhðd1xÞ þ C cosðd2xÞ þ D sinðd2xÞ; ð7Þ
where

d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ p2

4

s
� p

2

2
4

3
5
1=2

p
L

� �
; d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ p2

4

s
þ p

2

2
4

3
5
1=2

p
L

� �
: ð8Þ

Substituting equation (7) into conditions (3a–d) yields

A þ C ¼ 0; d1B þ d2D ¼ 0; ð9a; bÞ

½A coshðd1LÞ þ B sinhðd1LÞ
d21 � ½C cosðd2LÞ þ D sinðd2LÞ
d22 ¼ 0; ð9cÞ

½A sinhðd1LÞ þ B coshðd1LÞ
 d21 þ pð1� mÞ p
L

� �2
� �

d1

þ ½C sinðd2LÞ � D cosðd2LÞ
 d22 � pð1� mÞ p
L

� �2
� �

d2 ¼ 0: ð9dÞ

To obtain a non-trivial solution for A;B;C and D; the relevant determinant composed
of the coefficients of equations (9a–d) should vanish. By the use of this condition, we have
the governing equation for the parameters o and p as follows:

f ðo; p;mÞ ¼ 2o2 þ mp2 þ ½2o2 þ ð1� mÞp2
coshðd1LÞcosðd2LÞ
� ð1� 2mÞop sinhðd1LÞsinðd2LÞ ¼ 0: ð10Þ

It is seen that the equation depends on the tangency coefficient (m). Equation (10) may
be written in an alternative form:

p ¼ gðo;mÞ: ð11Þ
Clearly, it is not easy to obtain the function gðo;mÞ in an explicit form.
Before analyzing the interaction between ðoÞ and ðpÞ in the general case, a particular

case of o ¼ 0 is studied as follows. From equation (8), it is found that d1 ¼ 0; d2 ¼
ffiffiffi
p

p
p=L:

Substituting these results into equation (10) yields

cosðkpÞ ¼ � m

1� m
or k ¼ 1

p
arccos � m

1� m

� �
ð p ¼ k2Þ: ð12Þ

From equation (12) we see that if and only if m40�5 the relevant solution for k exists. In
order to know the relation of ðkÞ versus ðmÞ; the first six ki ði ¼ 1; 2; . . . ; 6Þ in the three
cases (m ¼ 0�49; 0�499, 0�5) are listed in Table 1.
Table 1

The first six normalized ki ði ¼ 1; 2; . . . ; 6Þ for the cantilever under the action of generalized

follower force ð p ¼ k2Þ
m k1 k2 k3 k4 k5 k6

0�49 0�972 1�028 2�972 3�028 4�972 5�028
0�499 0�991 1�009 2�991 3�009 4�991 5�009
0�50 1�000 1�000 3�000 3�000 5�000 5�000
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From equation (12) and Table 1 we see the following points: (1) if m50�5;
the eigenvalues ki ði ¼ 1; 2; . . . ; 6Þ are located on the isolating position, (2) if m50�5
and m ! 0�5; the difference between two successful eigenvalues becomes smaller,
for example, k2i � k2i�1 ¼ 0�056 at m ¼ 0�49; and k2i � k2i�1 ¼ 0�018 at m ¼ 0�499;
(3) if m ¼ 0�5 the two successive eingenvalues merge into one value, for example,
k2i � k2i�1 ¼ 0; and k1 ¼ k2 ¼ 1�000: In fact, this is the double root case, (4) if m > 0�5;
there is no solution for (k) from equation (12). From the above analysis, the following
definition is introduced:

If the first two eigenvalues merge into one value, i.e., k2 � k1 ¼ 0; at some particular
value of (m), this particular value of (m) is called the mode transform value mtr:

Obviously, in the present case mtr ¼ 0�5 [14]. Later, it will be seen that the interaction
between force and frequency is quite different for two cases m4mtr and m > mtr:

Similarly, in the p ¼ 0 case, the successive zeros of the function f ðo; 0;mÞ are denoted
by oj ð j ¼ 1; 2; . . .Þ respectively. The first two zeros o1 ¼ 0�356 and o2 ¼ 2�233 are
indicated in Figure 2.

The function p ¼ gðo;mÞ shown by equation (11) is evaluated by using the half-division
technique [15]. This function, in turn, is called the force–frequency curve hereafter.
Clearly, the mentioned function generally has a complicated character.

The obtained force–frequency curves p ¼ gðo;mÞ can be separated on two cases.
For the m4mtr cases (mtr ¼ 0�5), the relevant curves for m ¼ 0�0; 0�20; 0�49; and 0�50
are plotted in Figure 2. In fact, there are many curves for a given value of m ðm4mtrÞ:
However, the most interested curves are first two of them. For example, if m ¼ 0�00;
the two curves are the AC and BH shown in Figure 2. Similarly, there are AD and
BG curves for the case of m ¼ 0�2; and AE and BF curves for the case of m ¼ 0�49: Finally,
for the case of m ¼ mtr ¼ 0�5; the left ends of the two force–frequency curves are
merged into one point Q; and the force–frequency curves become AQ and BQ. In fact, the
case m ¼ mtr ¼ 0�5 is the limitation for which the static criterion of the buckling analysis is
still valid. In this case, it is natural to define the buckling loading by the following
definition:

In the case of m4mtr ¼ 0�5; the lowest root of (p) from the equation f ð0; p;mÞ ¼ 0 is the
buckling loading of the cantilever.
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Figure 2. The force–frequency interaction curves for the cases m4mtr (mtr ¼ 0�5).
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For the cases of m ¼ 0; 0�2; 0�49 and 0�50, the normalized buckling forces p ¼ h1ðmÞ are
listed in Table 2.

For the m > mtr (mtr ¼ 0�5) cases, the relevant curves for m ¼ 0�51; 0�55; 0�80 and 1�00
are plotted in Figure 3. From Figure 3 we see that the force–frequency curve is
significantly changed, if one compares to the case of m5mtr: For example, in the case of
m ¼ 0�51 case, from Figure 3 we see that there is no solution for ( p) from the equation
f ð0; p;mÞ ¼ 0: That is to say, the static formulation of the buckling problem cannot give a
solution of (p). Secondly, the relevant force–frequency curve ARB (for m ¼ 0�51 case) is
actually deformed from two curves AQ and BQ (for m ¼ 0�50 case). Furthermore, the
curves are gradually changed from ARB (for m ¼ 0�51) to ASB (m ¼ 0�55), to ATB

(m ¼ 0�80), to AUB (m ¼ 1�00).
Following the idea proposed by Timoshenko [4], when the p value is increasing a

complex eigenvalue o will be encountered. Also, the complex eigenvalue of o will make
the motion divergent. Therefore, it is natural to define the critical force by the following
dynamic criterion.

In the case of m > mtr ¼ 0�5; the highest value of p for which the relevant real eigenvalue
o can be obtained from f ðo; p;mÞ ¼ 0 is the critical force of the cantilever.

For both cases m4mtr ¼ 0�5 and m > mtr ¼ 0�5; the buckling or critical force and
relevant frequency are expressed by

p ¼ h1ðmÞ ðfor both casesÞ; ð13Þ
Table 2

Dependence of the normalized critical force (p) on the parameter (m), in the uniform section

case

m 0�0 0�2 0�49 0�50 0�51 0�55 0�80 1�00
h1ðmÞ 0�240 0�337 0�829 1�000 1�627 1�632 1�782 2�032
h2ðmÞ 0�732 0�788 1�009 1�118
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Figure 3. The force–frequency interaction curves for the cases m > mtr (mtr ¼ 0�5).
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o ¼ h2ðmÞ ðfor case m > mtr ¼ 0�5Þ: ð14Þ

Note that the calculated values for h1ðmÞ in Table 2 are obtained from different criteria,
the static criterion (for m4mtr ¼ 0�5) and the dynamic criterion (for m > mtr ¼ 0�5). From
Table 2, it is seen that the calculated values for the function h1ðmÞ are discontinuous at the
point m ¼ mtr ¼ 0�5:

3. ANALYSIS AND NUMERICAL SOLUTION FOR THE VARYING SECTION CASE

In this section, it is assumed that the varying cross-section has a taper configuration.
After substituting equations (4) and (5) into equations (2), the governing equation of
motion becomes

d2

dx2
gðxÞd

2W

dx2

� �
þ p

p
L

� �2d2W

dx2
� o2 p

L

� �4

hðxÞW ¼ 0 ð04x4LÞ: ð15Þ

The boundary conditions (3a–d) are rewritten as

W jx¼0 ¼ 0;
dW

dx

����
x¼0

¼ 0; ð16a; bÞ

d2W

dx2

����
x¼L

¼ 0;
d

dx
gðxÞd

2W

dx2

� �
þ pð1� mÞ p

L

� �2dW

dx

� �����
x¼L

¼ 0: ð16c; dÞ

In fact, for any given o and p; for equation (15) we can solve the following initial-
boundary value problems:

W jx¼0 ¼ 0;
dW

dx

����
x¼0

¼ 0;
d2W

dx2

����
x¼0

¼ 1;
d3W

dx3

����
x¼0

¼ 0 ðthe fundamental problem QÞ;

ð17Þ

W jx¼0 ¼ 0;
dW

dx

����
x¼0

¼ 0;
d2W

dx2

����
x¼0

¼ 0;
d3W

dx3

����
x¼0

¼ 1 ðthe fundamental problem SÞ:

ð18Þ
The relevant solution is called the fundamental solution QðSÞ respectively. The obtained

solutions are denoted by

W ¼ qðx;o; pÞ ð04x4LÞ ðfor the fundamental problem QÞ; ð19Þ

W ¼ sðx;o; pÞ ð04x4LÞ ðfor the fundamental problem SÞ: ð20Þ

The mentioned numerical solution for the functions qðx;o; pÞ and sðx;o; pÞð04a4LÞ can
be easily obtained by using the well-known Runge–Kutta integration rule [16].

Clearly, we can seek the general solution in the form

Wðx;o; pÞ ¼ c1qðx;o; pÞ þ c2sðx;o; pÞ: ð21Þ

After substituting equation (21) into condition (16c,d), in order that the non-trivial
solution for the coefficients c1; c2 exists, the relevant determinant should vanish. Therefore,
we have

f ðo; p;mÞ ¼ 0; ð22Þ

where

f ðo; p;mÞ ¼ f11f22 � f12f21; ð23Þ
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f11 ¼ q00ðL;o; pÞ f12 ¼ s00ðL;o; pÞ;

f21 ¼ gðLÞq000ðL;o; pÞ þ pð1� mÞ p
L

� �2

q0ðL;o; pÞ;

f22 ¼ gðLÞs000ðL;o; pÞ þ pð1� mÞ p
L

� �2

s0ðL;o; pÞ; ð24Þ

where, for example, s000ðL;o; pÞ denotes the value of ds3ðx;o; pÞ=dx3 at x ¼ L:
Equation (22), or f ðo; p;mÞ ¼ 0; represents the force–frequency interaction mentioned
previously.

In the following numerical analysis it is assumed e ¼ 0�5 in equations (4) and (5). As
before, in the o ¼ 0 case, the successive zeros of ðpÞ for the function f ð0; p;mÞ are denoted
by pj ( j ¼ 1; 2 . . .) respectively. A particular value of m is called mtr; which is defined such
that the condition p1 ¼ p2 is satisfied. In the studied case (e ¼ 0�5), it is found mtr ¼ 0�6014;
and the corresponding buckling loading is p1 ¼ p2 ¼ pr ¼ 2�090:

Similarly, in the p ¼ 0 case, the successive zeros of the function f ðo; 0;mÞ are denoted
by oj ð j ¼ 1; 2; . . .Þ respectively. The first two zeros are o1 ¼ 0�299 and o2 ¼ 2�463:

As mentioned above the force–frequency interaction curves p ¼ gðo;mÞ can be
evaluated numerically [15]. For the m ¼ 0�00; 0�30, 0�6014 and 0�61 cases, the relevant
curves are plotted in Figure 4. From Figure 4 we see that, for m ¼ 0�00 and 0�30 cases,
there are two separated curves AC and BH (for the m ¼ 0�00 case), AD and BG curves (for
the m ¼ 0�30 case). However, in the case of m ¼ mtr ¼ 0�6014; the left ends of curves are
merged into one point Q: Also, in the case of m ¼ 0�61 > mtr; the curve becomes ARB in
Figure 4. Similarly, for the m ¼ 0�80; 1�00, 1�20, 1�40 and 1�60 cases, the relevant curves are
plotted in Figure 5.

Similarly, the buckling or critical force can be obtained from the static criterion (for the
m4mtr case) or from the dynamic criterion (for the m > mtr case). For both cases m4mtr

and m > mtr; (mtr ¼ 0�6014), the buckling or critical force and the relevant frequency are
expressed by

p ¼ h1ðmÞ ðfor both casesÞ; ð25Þ
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Figure 4. The force–frequency interaction curves for the cases m ¼ 0�00; 0�30, 0�6014 and 0�61 (mtr ¼ 0�6014)
in the varying cross-section case.



0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

6

7

8

e=0.5
m=1.80: AXB curve

m=1.60: AWB curve

m=1.00: ATB curve

m=1.40: AVB curve

m=1.20: AUB curve

U

X

T

S

0.299 2.463m=0.80: ASB curve

W

V

BA

p

ω

Figure 5. The force–frequency interaction curves for the cases from m ¼ 0�80 to 1�80 in the varying
cross-section case.

Table 3

Dependence of the normalized critical force (p) on the parameter (m), in the tape section

case

m 0�0 0�3 0�59 0�6014 0�61 0�80 1�20 1�60
h1ðmÞ 0�400 0�625 1�673 2�090 3�854 4�020 4�932 6�765
h2ðmÞ 0�799 0�964 1�145 1�155
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o ¼ h2ðmÞ ðfor the case m > mtr ¼ 0�6014Þ: ð26Þ

The calculated values are plotted in Table 3. It is seen from Table 3 that the calculated
values for the function h1ðmÞ are discontinuous at the point m ¼ mtr:

4. CONCLUSIONS

The analysis of interaction between the compressive force and the vibration frequency
plays an important role in the present study. The interaction can be expressed by
f ðo; p;mÞ ¼ 0; or in an alternative form p ¼ gðo;mÞ: The function gðo;mÞ generally
depends on the tangency coefficient ðmÞ: Generally, the function gðo;mÞ is a complicated
function, particularly in the varying cross-section case. In this paper, an effective
numerical method is suggested to obtain the function gðo;mÞ:

Secondly, on the basis of many interaction curves p ¼ gðo;mÞ from different values of
ðmÞ; for example, shown by Figures 4 and 5, one can easily determine whether the static or
dynamic criterion will be used. In addition, the critical force can be evaluated immediately.
It is found that if the tangency coefficient (m) is larger then the critical force is higher.
Physically, the lateral component of the compressive force can elevate the critical loading.
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